M1.(a) B
(b) D
(c) E
(d) C
(e) 92.5×6 and 7×7.5
6.08

M2.(a) Y
(b) W
(c) V
(d) W
(e) X

M3.(a) (i) Na

> allow sodium
> (ii) Cu
> allow copper
> (iii) C
> allow carbon
> (iv) He allow helium
> allow hydrogen
> do not allow H_{2}
(b) H

Page 3

M4.(a) (i) atomic weight
(ii) groups
(iii) left a gap
(iv) had not been discovered by 1869
(b) protons

> must be in correct order
electrons
(c) sodium and nickel are both metals
sodium is more reactive than nickel
(d) (i) bromine

$$
\begin{aligned}
& \text { allow } \mathrm{Br}_{2} / \mathrm{Br} \\
& \text { do not allow bromide }
\end{aligned}
$$

(ii) iodine is less reactive (than bromine)

$$
\begin{aligned}
& \text { it = iodine } \\
& \text { allow converse } \\
& \text { do not allow bromide }
\end{aligned}
$$

M5.(a) (i) E
(ii) C
(iii) A
(b) (i) quickly melted
allow melts in contact with water,
allow bp $100^{\circ} \mathrm{C}$ (of water) shows $m p$ is low ignore one other piece of information
(ii) easily cut
ignore one other piece of information
(iii) effervescence / fizzing / bubbling
ignore named gas
ignore one other piece of information

M6.(a) 1 / one
(b) (i) protons
(ii) neutrons
(iii) 7
(c) (i) losing
(ii) a positive
(iii) electrostatic
(d) high melting points
strong bonds
(e) (i) 58.5

Page 6

(ii) mole
(f) very small (particles) or
ignore tiny / small / smaller / microscopic etc.
$1-100 \mathrm{~nm}$ in size or
(particle with a) few hundred atoms

M7.(a) number

0
allow 8
(b) beryllium or magnesium or strontium or barium or radium

allow correct symbols

(c) (i) an alkali metal
(ii) a transition metal
(d) for undiscovered elements
accept so elements with similar properties were in the same groups accept so elements fitted the pattern of properties

M8. (a) groups
(b) it is a non-metal
allow it is not a metal
(c) to the right of column 7 / Group 7
accept in Group 0
ignore Group 8 / noble gases
(d) (atomic) number
allow proton number

M9. (a) sodium has a lower density
sodium is more reactive
(b) hydrogen
(c) $\mathrm{OH}^{-}(\mathrm{aq})$

